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Acceleration in Periodic Structures 
•  We consider motion of particles either through a linear structure or in a circular ring 
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Slip Factors and Phase Stability 

•  The sign of the slip factor determines the stable region on the RF curve. 
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η>0 (above transition) 



Longitudinal Acceleration 
•  Consider a particle circulating around a ring, which passes through a 

resonant accelerating structure each turn 

•  The energy gain that a particle of the nominal energy experiences each turn 
is given by  

    where this phase will be the same for a particle on each turn 
•  A particle with a different energy will have a different phase, which will evolve 

each turn as 
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Phase Difference 
•  The phase difference can be expressed as  
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Longitudinal Equation of Motion 
•  Thus the change in energy for this particle for this particle will evolve as 

 
•  So we can write 
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Synchrotron Motion and Synchrotron Tune 
•  Rewrite this equation as: 
 

•  For small oscillations,  

•  And we have  

•  This is the equation of a harmonic oscillator with 
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Longitudinal Phase Space and Emittance 
•  We want to write things in terms of time and energy.  We have can 

write the longitudinal equations of motion as 

 
•  Following our procedure for longitudinal motion, we want to write this 

in form: 
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•  Taking the derivative wrt n and substituting for ΔE gives us 

•  So we can write 

•  But we’ve seen that before! 
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•  This looks just like our equation for transverse motion with α=0, so we 
immediately write 

•  Where 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Longitudinal Motion 10 

( ) ( )
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ

Δ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

Δ

0

0

2cos2sin
2sin2cos

)(
)(

E
t

nn
nn

nE
nt

ssL

sLs

πνπνγ

πνβπν

		
βL =

τ η

2πESβ 2ν s
= −

τη

eV0ωrf ESβ
2cosϕ s

;γL =
1
βL

s
S

rf
s E

eV
φ

β

τηω

π
ν cos

2
1

2
0−=

Units: s/eV Units: eV/s 



•  We can define an invariant of the motion as 

 

•  What about the behavior of Δt and ΔE separately? 

•  Note that for linacs or well-below transition 
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Large Amplitude Motion 
•  We have solved for the synchrotron tune in the limit of small oscillations, but 

in general we will not restrict ourselves to small oscillations. 
•  Recall our exact equations of motion: 

 

•  Multiply both sides by     and integrate over dn  
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Orbits 
•  The relationship between phase angle and ΔE is given by 
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Stable Region 
•  The range in φ will be determined by the classical turning points 
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Separatrix 
•  The “separatrix”, or maximum stable orbit, is defined by 
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Longitudinal Bucket 
•  The “bucket” is the area contained within the separatrix 
•  The “bucket height” is the maximum ΔE, which will occur when φ=φs. 
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Transition Crossing 
•  We learned that for a simple FODO lattice 

so electron machines are always above transition. 
•  Proton machines are often designed to accelerate through transition. 
•  As we go through transition 
•  Recall 

 
 
 
 
 
 
 
so these both go to zero at transition. 

•  To keep motion stable 
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Effects at Transition 
•  As the beam goes through transition, the stable phase must change* 

•  Problems at transition (pretty thorough treatment in S&E 2.2.3) 
•  Beam loss at high dispersion points 
•  Emittance growth due to non-linear effects 
•  Increased sensitivity to instablities 
•  Complicated RF manipulations near transition 

•  Much harder before digital electronics 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Longitudinal Motion 18 

*animations from Gerry Dugan 



RF Manipulations 
•  As you’ll show in homework, the synchrotron tune (longitudinal oscillations/

turn) is generally <<1. 
•  That means that if there are multiple RF cavities around the ring, the orbiting 

particle will see the vector sum of the cavities. 

•  We will clearly get the maximum energy gain if all phases are the same, so 
(assuming all voltages are the same) 
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Do we always want the maximum acceleration? 
•  As we’ll see, there are times when we want to change the amplitude of the RF quickly. 
•  Because cavities represent stored energy, changing their amplitude quickly can be 

difficult.  
•  Much quicker to change phase 
•  Standard technique is to divide RF cavities into two groups and adjust the relative 

phase. In the simplest case, we put half the RF cavities into group “A” and half into 
group “B”.  We can adjust the phases of these cavities relative to our nominal 
synchronous phase as 

•  So 
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Adiabatic Capture* 
•  We initially capture the beam by raising the RF voltage “adiabatically” (over many 

synchrotron oscillations).  This insures that the longitudinal phase space stays 
matched to the RF bucket 

 

•  If instead we simply turn the RF on, the beam will “filament”. 
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(*Synergia simulations: IOTA ring, protons, K=2.5 MeV, τ=1.77 µsec, h=4, 
Vmax=1kV) 



•  We can adiabatically capture beam by increasing the RF voltage with 
no accelerating phase 

 

•  As we accelerate beam, Δt decreases. Recall 
 

•  So as beam accelerates, bunches get narrower 

Capture and Acceleration 
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Bucket to Bucket Transfer 
•  In general, the accelerating gradient of an RF structure is 

•  So when bunches get short enough, it’s advantageous to transfer to a higher 
frequency.  For example, in the Fermilab Linac 
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Bucket Transfers: Phase and Beta Matching 
• When we transfer beam from one machine to another, 

or from a lower frequency section to a higher frequency 
section, it’s important to correctly match the phases! 
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Bunch Rotation 
•  If we slowly change the RF voltage (or effective voltage by phasing), 

we can adiabatically change the bunch shape 

•  If we suddenly change the voltage, then the bunch will be mismatched 
and will rotate in longitudinal phase space 
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Bunch Rotation (cont’d) 
• Of course, non-adiabatically increasing the RF voltage 

(“snapping”) will cause the beam to filament, but the effect 
is minor over ¼ of a synchrotron oscillation 
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RF “Gymnastics” 
• By manipulating the RF in the system, very sophisticated 

things can be done* 
•  Example: Bunch splitting: 
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*R. Garoby, “RF Gymnastics in Synchrotrons” 

Iso-adiabatic rebunching is generally used after debunching is completed. It is a time-reversed 
version of iso-adiabatic debunching, starting abruptly at the level VI_reb and rising progressively to 
VF_reb. Similar formulae apply.  

4.2 Splitting (merging) 
Splitting is used to multiply the number of bunches by 2 or 3 and merging is the reverse process [9, 
10]. Although limited in use to circumstances where such ratios are of interest, these processes have 
the remarkable advantage with respect to iso-adiabatic debunching–rebunching of being capable of 
being quasi-adiabatic and preserving emittance. 

Splitting bunches into two is obtained using simultaneously two RF systems with an harmonic 
ratio of 2. The bunch is initially held by the first system (V1, h1) while the second (V2, h2 = 2 h1) is 
stopped. The unstable phase on the second harmonic is centred on the bunch. As the voltage V2 is 
slowly increased and V1 decreased, the bunch lengthens and progressively splits into two as illustrated 
in Fig. 9.  

 

Fig. 9: Bunch splitting into two 

Good results are consistently obtained when the voltage V1(h1) = V1_sep is such that, at the 
moment when two separate bunches have just formed, the initial bunch would fill ~1/3 of the bucket 
acceptance in the absence of second harmonic (V2(h2) = 0 kV).  Voltage variations are generally linear 
functions of time with a total duration larger than 5 synchrotron periods in the bucket (V1_sep, h1). Each 
final bunch has ½ the emittance of the initial one, and almost no blow-up is observed. 

An illustration of an operational implementation of double splitting in the CERN PS is shown in 
Fig. 10. A bunch on h = 8 is split into two on h = 16 within 25 ms and no blow-up can be noticed. On 
the left side of the same figure, the evolution of particle density in the longitudinal phase plane during 
the process is reconstructed using longitudinal tomography [11]. 

 

Fig. 10: Example of bunch double-splitting from h = 8 to h = 16 in the CERN PS at 3.57 GeV/c 

Splitting bunches into three requires using three simultaneous RF systems. The relative phases 
between harmonics as well as the voltage ratios must be precisely controlled for the particles to split 
evenly into the new bunches and longitudinal emittance preserved. Results as good as for bunch 
double-splitting have been achieved, and final bunches are 1/3 the emittance of the original one. The 
voltages and the evolution in longitudinal phase space as a function of time are illustrated in Fig. 11. 

Fig. 11: Bunch triple-splitting 



• Example: Bunch formation in CERN PS for LHC* 
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